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ABSTRACT
Objective: To obtain a machine learning (ML) model to predict the milk yield adjusted to 305 d (MY305) from 
the same lactation period.
Design/methodology/approach: A database of test days (TD) was used, made up by 11,892 records of daily 
milk production from cows with more than 150 days in milk (DIM), from 19 farms in Querétaro, Mexico. The 
milk production was standardized to specific DIMs (5, 10, 20, 30 and 40) and estimations of MY305 were 
obtained with these, using ML models. The following were also incorporated as explicative variables of the 
herd: month of birth of the cow, month of start of lactation, number of lactation, number of days for three daily 
milking events, and the two first linear scores of somatic cells. 
Results: The best goodness of fit was achieved with ensemble models, obtaining a deviance of 1503584 in the 
training with 80% of data chosen randomly, while with 20% of the data reserved to evaluate the deviance model 
it was 1576776. The relationship between data observed and predictions of MY305 of the ensemble models 
had a coefficient of determination of r20.79 and RMSE of 1256. In the best individual model (deviance of 
2281420) of ‘deep learning’ type, the most important variables were daily milk production at 30, 10, 5 and 20 
DIM (19.9, 16.6, 16.2 and 12.8%, respectively).
Limitations on study/implications: The value of RMSE was high. Although TD databases are generated 
regularly and following systematic measurement procedures but not many farms are represented.
Findings/conclusions: For the database examined, milk production in the early phase of lactation together 
with a set of automatic learning models resulted in an adequate prediction of MY305.

Keywords: machine learning, somatic cells, lactation curve, test day.

INTRODUCTION
 The predictions of daily cow milk production (MY), including the current lactation, 
are important to identify critical situations of productive interest and with that to make 
decisions about nutrition, feed management, reproduction, preventive health, genetic 
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improvement, among others [1], [2]. The prediction of MY is possible with data-
based models of: prior and/or contemporary lactation events of the cow or herd [3]-
[5]. Traditionally, MY data in test days (TD) are used to predict the future individual 
production of cows based on the lactation curve; in these cases, the incomplete gamma 
function proposed by Wood in 1967 [6], is one of the most frequently used to describe 
the lactation curve [7]. When the MY is modelled in cow groups, the data of genotype, 
weight and age of the cow, body condition, frequency of milking and somatic cell count 
(SCC) in the milk, among others, are also useful.
 Presently, there are machine milking systems that record the MY in every milking, in 
addition to other variables. Currently, the integration of this type of database is one of 
the most important challenges in the dairy industry due to the diversity of technologies 
available and the overf lowing of data that happens in dairy operations [8]. However, the 
databases of MY in TD continue being essential for the study of prediction models of MY 
[4]. Modelling of individual lactation curves or groups of cows with empirical models, 
such as the Wood function [6] or mechanistic ones [9], allow performing punctual or 
accumulated MY estimations in time. To perform comparisons between cows, there is 
a well-established metric, where the MY is adjusted to 305 days in milk (DIM) and to 
a mature equivalent (MY305) [10], [11]. The MY305 can be adjusted according to the 
milk solids content and by the number of lactations, allowing to establish comparisons 
between cows.
 Currently, the predictive models of MY based on machine learning (ML) algorithms 
are increasingly more frequent in the literature and their performance has shown greater 
advantages than the regression models adjusted by least squares [2], [12]. The applications 
of the ML models in the milking systems are broad [12], [13]. Ensemble models with 
strategies of classification and/or regression can be obtained with the ML approach, using 
incomplete data records, crossed-validation routines, selection of variables, exploration 
of hyper-parameters, selection of models and automatic ensemble models, with the 
intention of avoiding the model’s overfitting [14]. With the ML models, there have been 
advancements in the interpretability of the model, allowing to identify the importance of 
the variables included in the model and the contribution to the solution of specific data 
records or in the set of the database [15].
 For this study, the data available from the early lactation phase of Holstein-Friesian 
cows were used to predict the MY305. With this approach, Pereira et al. [16] identified 
the Bayesian empirical method and only 5 TD, as the most effective in the prediction of 
MY305 in Holstein livestock. The neural networks have performed better to predict the 
MY with early lactation data or from the transition period [4], [17]. Although the data 
from the transition period of the milking cow are important for the health and future milk 
yield [18], it is a challenge to predict the future MY, since the TD during early lactation 
tend to be few and also the health state of the cow can be compromised [4]. The use of daily 
milk production records based on TD data are proposed, together with the data that allow 
classifying cows according to their month of birth and their calving, number of lactation, 
herd and somatic cell count. The objective was to obtain a ML model to predict MY305 
based on data from early lactation of Holstein-Friesian cows in Querétaro, Mexico.
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MATERIALS AND METHODS
 Data from lactation periods that started in 2006 were used, generated in Mexico by 
Mexico’s Holstein Association (Asociación Holstein de México, AHM), from 19 herds in 
the state of Querétaro corresponding to 13,935 lactation records of Holstein-Friesian 
cows. The cows recorded were from lactation one to ten. Each lactation record had 
up to ten milk weighing moments. Most of the herds were kept in the milk production 
confinement system.
 The Wood function (Equation 1) was used to model the individual lactation curve 
for the records with more than five TD and DIM higher than 150 (n11,892). The 
milk production adjusted to mature equivalent obtained by the AHM (MY305, kg) was 
predicted through explicative variables: herd, month of birth of the cow, month of start of 
lactation, number of lactation, number of days in three times daily milking (3x), first two 
scores of the linear scoring (LS) system based on the recount of somatic cells (LS 1 and LS 
2, Equation 2) (adopted by the Dairy Herd Improvement Association, DHIA), and the 
estimated milk production (MY , kg) with the Wood function for days: 5, 10, 20, 30 and 40 
(MY5, MY10, MY20, MY30 and MY40). The MYs were selected due to the irregularity 
in the intervals of TD to different DIM. The discreet variables that classify the cows were 
used based on the report by Grzesiak et al. [7] to model the daily production of milk using 
neural networks.

 Y at et
b ct= −    (1)

where: Yt is the daily milk production (kg) on day t of lactation, e is the base of the natural 
logarithms, a, b, c, are adjustment parameters [6]. 

Calculation of linear scoring based on the somatic cell count (SCC): 

 LS Log SCC= ( )+2 100 3/  (2)

where: LS is the linear scale of the somatic cell count, Log2 is the logarithm base 2, SCC is 
the somatic cell count (cells ml1 of milk). The conversion of LS to SCC is achieved with 

the following expression: SCC LS= × −( )100 2 3  [19].

 Machine learning (ML) algorithms were used to obtain a predictive model of MY305 
through the H2O package version 3.40.0.1 [14] of the R language [20]. The AutoML 
function results in a leaderboard of models and ensemble models generated from models 
of same leaderboard. The deviance was used as a metric of goodness of fit in the training 
of models and also to order the ensembles and individual models. The model with best 
adjustment was the one that produced lowest deviance. For the best individual model, the 
importance of the variables with their SHAP values was determined (SHapley Additive 
exPlanations). The code was executed without a time limit, with 50 processing threads on 
a dual Xeon E5-2680 v4 cluster and with a maximum of 360 Gb of RAM to execute the 
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AutoML function. Memory was reserved with another 152 Gb of RAM for external code 
routines of XGBoost (Optimized distributed gradient boosting machine) and within  the 
Ubuntu 22.04.2 LTS operating system.
 The AutoML function implies the pre-processing of data, normalization, model 
selection, optimization of hyper-parameters, analysis of predictions, and control of the 
over-parametrization of the model [21]. The ML algorithms used in this exercise were: DL 
(Deep learning), GBM (Gradient boosting machine), XGBoost and GLM (Generalized 
linear model). However, AutoML explores up to 15 types of algorithms to solve problems 
of classification and regression [14]. Each ML algorithm is executed many times to explore 
the effects of regularization and crossed validation on the accuracy of the model [22]. 
 The database was divided randomly in data for the training (80%) and 20% for the 
model testing [13]. During the training phase, the crossed validation was used to verify 
the stability of the solution; that is, an internal validation of the model defined by the 
parameter nfolds5. Thus, the training data were divided randomly into five groups; four 
groups were used to train the model, and the fifth to test the performance of the previously 
trained model. In each training run, the training database was again divided into five 
groups.
 The SHAP values [23] are based on the concept of the Shapely values [24] and they 
quantify the influence that each variable included in the model has for each individual 
prediction to deviate from the average prediction. However, each variable contributes 
in a different way in function of the k variables incorporated into the model; that is, 2k 
combinations. The SHAP values can be evaluated locally (local explanations) where the 
contribution of each variable on the result from each prediction is examined. Globally, the 
local explanations were aggregated to understand the impact of specific variables on the 
entire model. For individual models it is possible to obtain local and global explanations, 
but it is not possible for the case of ensemble models.
 With the best ML model, estimations of values observed for the MY305 from the 
database reserved for testing were obtained. The relationship between values observed 
and estimated was explored with a simple linear regression model and the coefficient of 
determination (r2), the root of the mean square error (RMSE), and the bias were obtained; 
the latter through the blandr package according to Bland and Altman [25].

RESULTS AND DISCUSSION
 In the management of dairy cows from the herds studied, extended lactation periods 
and three daily milking moments were identified as important practices. Lactation with 
less than 150 DIM were not analyzed (Table 1). In the database, the records from the first 
lactation were the most numerous (40%), and from these lactation events, 31% were with 
150 to 305 DIM and with three times daily milking. No first lactation longer than 305 
DIM had days to three times daily milking. The average MY305 of the data used was 
11,282 kg, although there was variation according to the duration of lactation and the 
number of lactation (Table 2). The herds with less than 100 lactation records had a lower 
MY305 than the herds with more than 100 records (9,233 and 11,310 kg, p0.012).
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The best result to predict the MY305 was a model ensemble of ML algorithms used. In 
this case, the deviance was 1503584 and a RMSE of 1226 for the training data, while 
with the data reserved for the evaluation, the deviance was 1576776 and a RMSE of 
1256. These measurements of goodness of fit suggested that the ensemble was a good 
representation of the database and that there was no over-adjustment. This indicated that 
the AutoML function solved the possible multicollinearity that could exist between the 
MY  values. The second best result was an ensemble of the best family of algorithms used, 
with deviance of 1717832 and RMSE of 1311 for the training data. Four other ensembles 
followed in the leaderbord (data not shown). Verification of the best ensemble resulted 
in r2 of 79.9 between observed and predicted values of MY305 (Figure 1). The bias was 
10.42 with a confidence interval at 95% of 63.8 to 43.0; these values were interpreted 
as the magnitude of underestimation of the model in relation to the MY305 observed. In 
this case, the confidence interval did not include zero, which indicated that the bias was 
significant.
 The best individual model was the DL type, which remained in sixth place in the 
leaderboard and their deviance was 2281420 and RMSE of 1510, which resulted in a lower 
goodness of fit than those of the ensembles. Out of 797 models and ensembles generated, 
the worst model was GLM type, with deviance 7621002 and RMSE of 2760. This result 
was explained because the GLM algorithm was highly penalized in the regularization 
process carried out by the AutoML function to reduce the over-adjustment caused by the 
multicollinearity in variables. In contrast, with ML algorithms such as neural networks 
and ensemble methods, this problem can be handled [26], [27]. For the prediction of 
MY305, the most important variables were the MYs at 5, 10, 20 and 30 DIM, followed 
by the somatic cell count and lactation number (Table 3). The variables of month of birth 

Table 1. Number of production records used according to their number of lactation, days in milk (DIM), 
and the practice of three milking moments per day (3X) for Holstein-Friesian cows in Querétaro, Mexico. 

DIM
Lactation number

Subtotal 3x
1 2 3 4

150 to 305 1803 1357 735 741 4636 2969

305 to 365 1343 880 466 449 3138 1654

365 to 730 1559 1074 613 740 3986 2057

730 70 27 18 17 132 91

Total 4775 3338 1832 1947 11892 6771

Table 2. Means ( x ) and standard error of the mean (se) for the milk production to mature equivalent 
obtained by the AHM (MY305, kg) of Holstein-Friesian cows in Querétaro, Mexico. 

DIM

Lactation number
1 2 3 4+

x se x se x se x se

150 a 305 11638 65 11287 73 10875 103 10066 95

305 a 365 11697 74 11569 89 11197 130 10789 132
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of the cow and calving month were variables of lower importance, just as 3X. Although 
calving month had importance of 4.2% in the DL model (and lower in other models), 
seasonal differences were observed for MY305 with milk productions from lactation 
started in winter, summer and spring being similar between them (11,111, 11,112 and 
11,181 kg, p0.05), winter and summer were different from fall (11,349 kg, p0.05), yet 
at the same time fall and spring were similar. This result suggests that the variables with 
low importance in the ML models also must be considered in modelling.

Table 3. Percentage importance of the variables adjusted in individual models of machine learning to predict 
the production of milk to mature equivalent (MY305) of Holstein-Friesian cows in Querétaro, Mexico.

Model
DL GBM GBM XGboost

MY30 19.9 55.1 56.1 34.7

MY10 16.6 6.5 6.3 9.6

MY5 16.2 7.5 7.5 13.4

MY20 12.8 4.4 4.0 10.2

CS 2 6.4 2.3 2.2 3.2

Lactation number 6.2 8.9 9.2 9.1

CS 1 5.2 2.5 2.4 3.3

Herd 4.9 6.8 7.1 7.3

Month of calving 4.3 2.8 2.6 3.4

3X 3.9 1.2 1.0 2.8

Cow’s month of birth 3.8 2.0 1.7 2.9

Ranking in the table of models 6° 8° 9° 11°

Deviance 2281420 2672503 2703187 2762434

RMSE 1510 1634 1644 1662

Figure 1. Relationship between values observed of milk production at mature equivalent adjusted to 305 d 
(MY305) and the corresponding values estimated by ensemble models of machine learning, y9511.074x, 
r20.79.
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 Figure 2 shows the SHAP contribution of each variable and each observation 
(lactation records) in the prediction of MY305 by an individual model of XGBoost type 
(eleventh on the scoring table). Using the H2O package, it is only possible to obtain the 
SHAP values for the models XGBoost, GBM and Random Forest. When the SHAP 
values were graphed, the aggregated trend of the contributions of each observation 
was appreciated where some of them contributed more than others. In the XGBoost 
values, the larger magnitude of the SHAP values of MY30 and MY5 indicated a higher 
predicted value of MY305 (reddish colors with positive SHAP value). In this model, 
the MY30 variable was more important than the MY5 variable (Table 3), because the 
SHAP values of MY30 were more useful to build a classification tree. For the MY10 and 
MY20 variables, the SHAP values of highest magnitude contributed to predicting lower 
milk yield (reddish colors with negative SHAP values). Likewise, as the SHAP value of 
number of lactation increased, the contribution was in the sense of lower magnitude of 
the MY305. For the linear scale (LS) of the somatic cell count, a negative contribution 
was observed in the model, but with comparatively lower SHAP values than the variables 
already mentioned.
 The distribution of the SHAP values for the MY  variables suggested that there are 
thresholds for these variables associated with a higher value of MY305. The graphs of 
partial dependency indicate that these thresholds are different between the ML models 
generated and in addition that the dependency was not linear between the MY305 and 
each variable included in the model, for example, for MY30 (Figure 3). The general 
linear model (GLM) did not show dependency of the MY305 in function of the range of 
MY  values. For the ensemble models, the partial dependency graph suggested that values 
of MY30 lower than 20 kg are not important to predict MY305; the same happened with 
values of MY30 higher than 40 kg when the dependency decreased. The grey bars in 
Figure 3 represent the frequency distribution of the data of MY305.

Figure 2. SHAP values for the XGBoost model presented in Table 3.
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Figure 3. Partial dependency of MY305 on MŶ30 for different ML models. The deviance for each model is 
presented. The frequency histogram of MY30 is shown in grey.

 The average values and standard deviations of MY305 of the first and second lactation 
events in the database examined (11,5862,760 kg and 11,4732,701 kg) were found 
within the range reported by Toledo-Alvarado et al. [28] in Holstein cows in Mexico, 
where the MY305 for the first lactation was 11,4732,443 kg and for the second one 
11,6122,652 kg; other lactation events showed slightly lower total yield than those 
reported in this study. Since the heifers are genetically superior, they generally have higher 
MY305 than the mature cows of lower genetic quality [29]. Likewise, the values of MY305 
reported here were numerically lower than the average of 12,662 kg for Holstein in the 
United States [30].
 We used estimated values of daily milk production (MY ) during the early lactation based 
on modelling with the Wood function. These data fulfilled the function of representing 
measurements of early lactation; in many farms these data could come directly from the 
registry of the automatized milking system. Based on our result, the daily registry of milk 
production can be explored during early lactation to obtain estimates of the MY305 or daily 
MY. This would be similar to the approach of [2], who used the machine learning algorithm 
XGBoost. In that study, with climate data of the 60 previous days, the identification, age 
and weight of buffalo, their feed consumption and their days in milk, the daily frequency 
of milking, milk production, and fat and protein composition in the next 28 days (r20.90) 
were predicted. 
 The variance and auto-correlation of deviations of the daily milk production during 
early lactation could be related to clinical mastitis [1].
 The variables of somatic cell count were included in the models, but they were not the 
most important. Of the 13,935 records, the LS did not have a value in any of the two dates 
examined (4,661 and 4,361 records) and 4,206 records did not have a value in any of these 
dates. It is possible that the low importance of LS 1 and LS 2 was a reflection of a disperse 
database.
 It is also possible that the management of some herds was satisfactory and the incidence 
of mastitis low. The herds with less than 100 records of lactation had higher counts than 



101 AGRO PRODUCTIVIDAD 2024. https://doi.org/10.32854/agrop.v17i7.2743

the herds with more than 100 records (LS 1 of 29.56 and 22.52 and LS 2 of 27.40 and 
18.31, p0.001). However, this result can be an effect from the dilution of the LS, since 
the herds with more than 100 cows had higher MY305. Correcting the LS in function of 
the MY would eliminate the effect of dilution [31].
 The proposal by Singh et al. [17] to predict the MY305 (r20.82) of buffalo in the first 
lactation is the one most similar in the literature to this study’s approach. They considered 
the milk production in test days at 6, 36, 66 and 96 DIM, the daily milk production in the 
peak of lactation, and the age at first calving. Cook et al. [29] considers the first test day 
(around 20 DIM) as an important predictor of yield at 305 d, because many of the health 
problems during the transition period would explain a low daily milk production at first 
DIM.
 In this study, the decision to use MY  at specific lactation days was made, with the 
aim of avoiding a disperse database. Although the ML algorithms can deal with disperse 
databases, their efficiency in training the model is low because the processing time increases 
and the complexity of the models also increases. In this sense, the use of the daily milk 
production records during early lactation would still have to be explored, even when the 
records of the number of test days and the days in milk of the measurement do not agree, 
as is the case with disperse databases. One possibility would be to group the measurements 
of test day by week of lactation, and thus to reduce the number of lactation records without 
data for a given week.

CONCLUSION
 This study showed that ensemble models of machine learning allow estimating the milk 
production adjusted to mature equivalent and that the deep learning algorithm is capable 
of generating the best individual model. Among the ten best models, six ensembles had 
the lowest deviance, followed by a deep learning model and the last three were gradient 
boosting machine. The daily milk production variables in the early phase of lactation, from 
5 to 30 days, were important in the models; however, this was not the case for the variables 
that classify the livestock, such as month birth, month of calving, the herd and others. No 
model included the daily milk production at 40 days of lactation.
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