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ABSTRACT
Objective: This study aimed to perform a bibliometric review focused on secondary metabolites of phenolic 
origin in the context of Alzheimer’s disease. Analyzing the research trend in this field during the last two 
decades, highlighting the chemical-computational (in silico) perspective. 
Design/methodology/approach: Publications from the last two decades (2001-2023) were examined using 
the academic search engine Dimensions. The focus of our analysis was on identifying co-occurrence networks 
of terms present in the titles and abstracts of these publications, setting a minimum threshold of 100 co-
occurrences for inclusion in the study (VOSviewer v. 1.6.19,2023). 
Results: The literature consulted suggests phenolic compounds as metabolites with preventive capacity, 
derived from their antioxidant, anti-inflammatory, and neuroprotective properties. 
Limitations on study/implications: However, it is essential to highlight the limitations observed in each area 
so that an integral vision is encouraged in future research. 
Findings/conclusions: The integration of epidemiological studies, in vitro investigations, in silico analysis, and 
in vivo experiments will advance the development of therapeutic strategies based on phenolic compounds for 
the care of multifactorial Alzheimer’s disease.
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INTRODUCTION
 Secondary metabolites (MeS) represent a diverse group of biomolecules derived from 
natural sources, including plants, bacteria, fungi, and algae. These substance’s roles 
complement primary or essential metabolism (nucleic acid and protein synthesis) with 
functions such as interspecies interactions, quorum sensing, and tissue differentiation. 
Moreover, MeS are involved in several critical functions, such as defense mechanisms 
against predators, adaptation to stress conditions (either biotic or abiotic), but also growth 
regulation, pollination, interspecies competition, and act as chemical messengers enabling 
intra- and interspecific communication (Böttger et al., 2017; Garcia-Mier et al., 2018).
 The diversity of mechanisms involving MeS is directly due to its wide chemical range. 
In plants, for instance, there are more than 200,000 different MeS reported (Rasmann 
et al., 2012). These molecules are synthesized and distributed at various levels, tissues, 
or phenological stages, being present in a limited way between taxonomic groups and 
representing 1% of the total weight of their organisms. (Akula & Ravishankar, 2011; 
Caretto et al., 2015). Moreover, the diversity of biological activities exhibited by secondary 
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metabolites (Gibney et al., 2019; Kim et al., 2021) underscores the significance of research 
on the chemistry of MeS, such as phenols, triterpenoids, f lavonoids, among others.
 The phenolic compounds are widely distributed in the cell walls of plants, forming part 
of polymers such as p-hydroxybenzoic acid, suberin, and lignin. In the case of lignin, a 
cross-arrangement of phenols is observed, with diverse spatial and structural distributions, 
adopting ortho-, meta- and para-positions (Li et al., 2023). This structural variability 
is due to the susceptibility of the benzene ring in phenols to be modified by hydroxyl 
groups (Hithamani et al., 2022). Such modifications lead to the formation of different 
phenolic compounds, each with its own distinct bioactivities. The phenolic compounds 
possess a versatility that makes them indispensable in our daily lives and essential both 
in scientific research and in different industries, including food, agriculture, cosmetics, 
and pharmaceuticals (Silva et al., 2020; Bondam et al., 2022). Hence, the importance of 
the identification of phenolic compounds as active principles in herbal drugs due to their 
medicinal and pharmacological properties (Sá et al., 2017; Xu et al., 2022). 
 With increasing life expectancy and the growing concern to address multimorbidity 
with more effective pharmacological strategies, there has been an increasing focus on 
the development of drugs with diverse biological properties (Zhang et al., 2017; Elansary 
et al., 2019; Foscolou et al., 2021). These include antioxidant capacity, antiproliferative 
effects, vasodilators, and enzyme modulators that are progressively relevant in the context 
of healthy aging toward addressing age-associated and chronic-degenerative diseases. 
(Zhang et al., 2017; Elansary et al., 2019). Among these diseases are heart disease, chronic 
obstructive pulmonary disease (COPD), diabetes mellitus, and Alzheimer’s dementia (AD) 
(Kovacic, 2017; Luna-Guevara et al., 2018).
 Alzheimer’s disease, the most common form of dementia worldwide with approximately 
55 million cases, is listed as the third most costly disease according to data recorded by the 
Alzheimer’s Association and the International Classification of Diseases (Gauthier et al., 
2021; ICD-11, 2023). The reported incidence in Mexico is 27.3 persons per thousand 
inhabitants yearly (Arrieta-Cruz & Gutiérrez-Robledo, 2015). Moreover, the number of 
cases is estimated to triple in the next 30 years (Hernández-Reyes et al., 2012; Mejía-Arango et 
al., 2020). This dementia is a progressive multisystemic terminal neurodegenerative disease 
of unknown etiology. It is mainly characterized by memory loss, language impairment, 
decreased motor coordination, and gradual intellectual decline (Sherman et al., 2021). 
 Concerning pharmacotherapy, medications approved by the Food Drug Administration 
(FDA) offer temporary symptomatic relief tailored to clinical needs at different progressive 
stages of dementia. During the initial therapeutic approach, acetylcholinesterase 
inhibitors, monoclonal antibodies, and NMDA receptor antagonists are administered. In 
more advanced stages of the disease, a combination therapy incorporating antidepressants, 
anxiolytics, and antipsychotics is usually chosen (Gustavsson et al., 2022; Cammisuli et 
al., 2022). These therapies often lead to adverse effects such as confusion, edema, and 
microhemorrhages, in addition to showing reduced efficacy (Huang et al., 2020; Alhazmi 
& Albratty, 2022). It has been observed that naturally occurring molecules of phenolic 
origin present a bioactive potential in neurodegenerative diseases, which can be exploited 
in the search for new strategies for the treatment of Alzheimer’s disease (Rojas-García et al., 
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2023). This study aims to conduct a bibliometric review focused on secondary metabolites 
of phenolic origin in the context of Alzheimer’s disease. The trend of research in this field 
during the last two decades will be analyzed, highlighting the chemical-computational (in 
silico) perspective.

MATERIALS AND METHODS
 The aim of this research is to conduct a bibliometric review of studies related to 
Alzheimer’s disease with particular emphasis on in silico studies concerning bioactive 
phenolics that might be useful as lead compounds in diverse drug development stages. 

Construction of a bibliographic database
 The database was obtained using the next-generation academic search engine 
Dimensions. It indexes more than 10 million datasets from more than 1000 repositories, 
including sources such as multidisciplinary publications, scientific, grants, datasets, clinical 
trials, patents, and policy documents (https://app.dimensions.ai) (Van Eck & Waltman, 
2010; Arruda et al., 2022).
 The systematic search for publications was performed by enriching the thesaurus 
“Alzheimer,” “phenols,” “in silico analysis,” and “computer-designed drugs.” The Boolean 
operators used were “AND” and “OR”. All publications in a time interval of the last two 
decades (2001-2023), were considered valid hits. The information obtained was classified, 
with special curation of unrelated topics to the study.

Bibliometric analysis
 For the bibliometric analysis, the software tool VOSviewer version 1.6.19,2023 was 
used. The software tool allows the construction and visualization of bibliometric networks 
based on queries in databases such as Web of Science, PubMed, Scopus, and Dimensions. 
In this work, our aim was to analyze the components of the bibliometric network generated 
by VOSviewer. The generated networks derived from the analysis of the co-occurrence of 
terms found in the titles and abstracts of the documents, with a minimum threshold of co-
occurrences set at 100. Nodes and links represent the semantic elements of the network. 
In this representation, nodes correspond to terms that co-occur, while links represent the 
relationships between these terms (Van Eck & Waltman, 2010; Arruda et al., 2022). The 
node size within the network reflects the frequency with which term appears, the distance 
between nodes indicates proximity, and colors group terms into independent clusters 
within the network.

RESULTS AND DISCUSSION
Chemotaxonomy of secondary metabolites
 The biosynthesis of secondary metabolites (MeS) is a complex and diverse process 
involving distinct metabolic pathways that sometimes become species-specific. However, 
several authors describe MeS biogenesis through four main pathways: 1) The mevalonic 
acid pathway used by plants, bacteria, fungi, and animals for isoprenoid synthesis (Bach 
& Weber, 1989; Thompson et al., 2018). 2) The methylerythritol phosphate pathway 
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used by archaea, protozoa, plants, and algae in the synthesis of terpenoids (González-
Cabanelas et al., 2016; Rodriguez-Concepcion, 2016). 3) The acetate-malonate pathway 
mainly employed by bacteria, fungi, and algae to synthesize polyketides (Niu et al., 2019). 
4) The shikimic acid pathway mainly used in plants to synthesize aromatic compounds 
such as alkaloids and phenols (Santos-Sánchez et al., 2019). Furthermore, these secondary 
metabolites are classified into four main groups: alkaloids, terpenes, cyanogenic glycosides, 
and phenolic compounds (Chomel et al., 2016). It is relevant to mention that phenols are 
the most prevalent secondary metabolites found in plants, with more than 8,000 molecules 
reported (Bhuyan & Basu, 2017). Phenols are classified according to their molecular weight, 
i.e. low molecular weight or simple phenols and high molecular weight phenols, also known 
as complex phenols (Chomel et al., 2016; Carregosa et al., 2022). Both can be subclassified 
based on their constituent carbon structure (Table 1). This classification provides a swift 
approximation to understand the diversity and mechanisms of action of these compounds 
in the plant kingdom as well as their potential use in biomedicine.
 The structural diversity of phenolic compounds can explain, in part, the heterogeneous 
biological activities that these compounds can display, suggesting their role as potential 
bioactive agents. Several clinical and preclinical studies have shown that phenols can help 
from the prevention to the treatment of neurodegenerative diseases, such as Parkinson’s 
and Alzheimer’s. Therefore, as progress is made in natural products as alternative therapies 
in treating chronic degenerative diseases, current challenges are addressed, and future 
perspectives for using phenols in neurodegenerative diseases are outlined.

Phenols and their therapeutic potential in chronic degenerative diseases
 Due to their quasi-ubiquitous presence in different organisms, phenols play an essential 
role in developing cosmetic additives, herbal products, functional foods, and active 
ingredients in pharmaceutical treatments (Ammar et al., 2020). The therapeutic activity 
of phenols was evidenced in various diseases (Rigacci & Stefani, 2015; Essa et al., 2016), 
where different metabolites, such as anthocyanins, f lavanols, procyanidins, f lavanols 
hydroxycinnamates and ellagitannins exhibited antiplatelet aggregation actions, oxidation 

Table 1. Classification of phenolic compounds according to molecular weight and carbon structure.

Molecular weight carbon skeleton

Low molecular weight less than 500 Da (LMW)

Benzoquinones (C6) 
Phenolic acids (C6C1)
Acetophenones and phenylacetic acids (C6C2)
Coumarins and hydroxycinnamic acids (C6C3)
Naphthoquinones (C6C4)
Xanthones (C6C1C6)
Stebilenes and anthraquinones (C6C2C6)
Flavonoids (C6C3C6)

High molecular weight from 500 to 3000Da (HMW)

Lignans (C6C3)2

Lignins (C6C3)n

Catecholamines (C6)n 
Tannins (C6C3C6)n

Lattazio, 2013; Jawal et al., 2018.
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of low-density lipoproteins, decrease in blood pressure, as well as, a lower association 
of mortality in cardiovascular diseases (Rodriguez-Mateos et al., 2014; Behl et al., 2020; 
Vetrani et al., 2020). Meanwhile, in respiratory diseases such as asthma and chronic 
obstructive pulmonary disease (COPD), phenols have stood out for their antioxidant, anti-
inflammatory, immunomodulatory, and bronchodilator effects (Sagar et al., 2020; Beigoli 
et al., 2021). 
 Regarding diabetes mellitus, resveratrol, and anthocyanins showed reduced blood 
glycemic index and improved functions in pancreatic β-cells (Asgar, 2013; de Paulo Farias, 
2021). Clinical studies in humans suggest that phenols present in grapes, such as catechin, 
epicatechin, anthocyanidin, and quercetin, after prolonged ingestion, tend to accumulate 
in the brain and show the ability to cross the blood-brain barrier, modifying the modulation 
of cell signaling and neutralization of the redox state in aged brains, and improve the 
cognitive activity. In addition, another study revealed that a diet rich in flavonoids, 
combined with physical activity, was associated with a lower risk of developing Alzheimer’s 
disease (Luna Guevara et al., 2018; Devi & Chamoli, 2020; Shishtar et al., 2020). This 
evidence proposes phenols as bioactive molecules with a broad pharmacological potential 
in neurodegenerative-type diseases. 

Epidemiological studies
 Epidemiological studies focused on Alzheimer’s disease (AD) have provided information 
on geographical prevalence (countries), age (dependent on aging rates), incidence (increases 
after 65 years), and risk factors (smoking, insomnia, stress, diet, and sedentary lifestyle 
in others). There are strategies designed for healthy mental aging (Yamada et al., 2015; 
Shahidi & Yeo, 2018), highlighting the adoption of healthy habits and incorporation of 
social, physical and cognitive activities (Makrakis et al., 2022), which, in conjunction with 
an anti-inflammatory diet high in phenols, can lead to a lower incidence of AD (Tobias 
et al., 2014; Gao et al., 2019; Bermejo-Pareja et al., 2016; Fernandez et al., 2018.; Azar et 
al., 2021; Chu et al., 2023). Some phenol-rich foods, such as olive oil, red wine, coffee, 
tea, cocoa-derived products, a variety of fruits, culinary herbs, and vegetables, have been 
identified as important sources of polyphenols (Angeloni et al., 2017; Holland et al., 2020; 
Pintać et al., 2022; Rivero-Pino et al., 2023). 
 These foods contain phenols, such as resveratrol, curcumin, apigenin, caffeic acid, 
ferulic acid, chlorogenic acid, quercetin, and other compounds. These substances add 
flavor and color to foods and have shown health benefits, including possible preventive 
effects for Alzheimer’s disease (Khan et al., 2019; Dhingra & Chopra, 2023). However, 
these associative studies highlighting the beneficial properties attributed to phenols lack 
scientific validation to understand the mechanisms of action of these metabolites in AD.

In vitro and in vivo studies
 Due to the above, in vitro, and in vivo studies seek tangible evidence of the attributes 
ascribed to phenols in AD. In this regard, the research conducted by Vargas-Restrepo 
and coworkers (2018) suggests quercetin can act as an anti-inf lammatory agent in 
AD, based on results obtained from a transgenic mice (3xTg-AD) animal model, 
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identifying the decrease of reactive microglia as well as f luorescent intensity of A 
aggregates, GFAP (glial fibrillary acidic protein), iNOS (nitric oxide synthase) and 
COX-2 (cyclooxygenase-2) immunoreactivity in the hippocampal area. All of them are 
factors associated with neuroinflammation present in AD brains. Phan et al. (2019), 
using an electrochemical approach, identified that the characteristics of aromatic rings 
and hydroxyl groups present in f lavonoid-type polyphenols (gallocatechin gallate and 
theaflavin) and stilbene (resveratrol and piceid), allow interaction with Aβ fibrils, leading 
to inhibition in structured aggregation of the same. On the other hand, in vivo studies 
were performed in the organism Caenorhabditis elegans as an AD model, through the 
generation of oxidative stress induced by AAPH (2,2’-azobis (2- methylpropionamidine 
dichlorohydrate) and then applying honey extracts from avocado multif lora (Romero-
Márquez et al., 2023), which is rich in phenols such as cafeic acid, ferulic acid, and 
protocatechuic acid (Zhang et al., 2018). This research identified a positive regulation of 
the daf-16 gene associated with the oxidative stress response, effectively decreasing the 
accumulation of reactive oxygen species (ROS). There is also some clinical evidence in 
humans, regarding the beneficial effects of these phenols in treating dementia (Quinn et 
al., 2004; Kovacic, 2017).
 One of the most recent and extensive works was focused on 921 older adults with a 
mean age of 81.2 years. These individuals were subjected to a diet enriched with flavonoids, 
including kaempferol, quercetin, myricetin, and isorhamnetin. The results obtained after 
one year of treatment revealed that only 23.89% (220 cases) developed Alzheimer’s disease, 
pointing to a significant correlation between phenol intake and reduction in the incidence 
of AD. However, the mechanisms of action of phenols as an alternative treatment for 
Alzheimer’s disease are not yet fully understood, nor whether this preventive effect lasts 
in the long term (Hollan et al., 2020). There is a need for more comprehensive research 
in this field. Furthermore, the implementation of standardized protocols that broaden the 
spectrum of analysis is essential. These protocols could include high-throughput strategies 
to address the chemical complexity of phenols, as allowed by in silico analyses (Carecho et 
al., 2023).

In silico studies
 In the last four decades, with the increase of computational resources and advancement 
in microprocessing technologies, in silico studies have occupied a central role in drug 
discovery workflows. Moreover, in silico analysis of phenolic compounds has been applied 
to find alternative strategies for AD. A systematic increase in the number of publications 
regarding Alzheimer’s with chemical-computational tools is the principal metric that 
reveals the interest of the scientific community. For the last decade (2013- 2023), a 2.5-
fold increase regarding in silico research is evident, as shown in Figure 1A. In 2001, only 
32 studies were carried out in this field, but in 2023, this number increased to 1,638 
investigations and continues to grow. It is worth noting that a maximum was recorded in 
2008, with a total of 4,597 published papers. Overall, to date, a total of 17,312 research 
studies have been published in this field (Dimensions, 10/10/23).
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 The sustained growth in academic contributions on Alzheimer’s disease with chemical-
computational tools in the last ten years (2013-2023) is summarized in Figure 1. Each point 
represents the influence of a specific year in the regression model. The red line denotes the 
overall threshold (4/n), where points above are considered potentially influential. Notably, 
the year 2020 (index 9) exceeds this threshold, indicating a significant influence on the 
model. The increase in the number of investigations is reflected in a positive upward trend, 
with a value of R20.48 and 0.05. It is important to note that although the correlation 
value is not statistically significant, this is due to the leverage effect caused by the low 
scientific production in 2020.
 Two methods were employed to determine the influence of the year 2020 on the observed 
correlation. First, a residual analysis to assess the discrepancies between the observed values 
and those predicted by the model annually, was performed. Subsequently, the specific 
impact of 2020 on the regression model was quantified using Cook’s distance. This analysis 
yielded a value of 0.4782631, significantly exceeding the typically established threshold, 
illustrated by a red line (Figure 1B). Generally, those points in which Cook’s distance 
exceeds 4/n are considered as influent or outliers. In this case, with n corresponding to the 
total number of observations (12 years), the threshold is 0.3333; since 0.4782631 exceeds 
this threshold, it is evident that the data corresponding to the year 2020 exerts a significant 
influence on the model, substantially affecting the estimates of its coefficients. The results 
mentioned above are supported by bibliometric network analysis of co-occurring terms.
 Three clusters were identified in the first decade (2001-2011) (Figure 2A). Cluster I covered 
topics related to drugs and studies of a genetic nature, in addition to research exploring the 
action of peptide aggregates such as beta-amyloid and tau. Cluster II highlighted research 
aimed at therapeutic targets of protein origin with in vitro evaluations. Cluster III focused 
on work of genetic interest that explores the biological origin of Alzheimer’s disease. During 
2012-2023, four clusters were identified (Figure 2B): Cluster I group articles highlighting the 
biological properties of naturally occurring phenolic compounds. Cluster II complements 
the findings of Cluster I by highlighting the bioactivity of biomolecules in pathological 
events associated with Alzheimer’s disease. As for Clusters III and IV, the outstanding 
inhibitory activity of phenols on various enzymes, including AChE, is highlighted. AChE 

Figure 1. A) Scatter plot: sustained growth in academic contributions on Alzheimer’s disease with chemical-
computational tools in the last ten years (2013-2023). B) Cook’s distance for annual publications from 2012 to 
2023.

A B



120 AGRO PRODUCTIVIDAD 2023. https://doi.org/10.32854/agrop.v16i9.2716

Figure 2. Bibliometric network analysis of co-occurring terms. A) most representative items used in Alzheimer’s 
research from 2001-2011. B) most representative items of the last decade (2012-2023).

is essential in the degradation of the neurotransmitter acetylcholine and has been a critical 
therapeutic target since the early stages of Alzheimer’s research. The in silico node shows 
a significant connection to this network’s four previously mentioned clusters; the results 
are presented in Figure 2, where the contribution of computational-theoretical research to 
Alzheimer’s disease is evident. This result differs from the network corresponding to 2001-
2011, where the clusters focus on experimental (in vitro) approaches and place the items 
“cluster,” which refers to in silico studies, in a distant position with low interconnection.
 According to our results, the networks have allowed the definition of two key lines 
of research in recent years (Figure 3). The first of these lines focuses on predicting the 
bioactivity of phenolic compounds, with particular emphasis on the antioxidant and 
anti-inflammatory activity of flavonoids (Cluster I). In comparison, the second cluster 
focuses on the deciphering of the mechanisms of action of phenols in AD pathological 
events, such as oxidative stress, inflammation, and protein aggregation. Both clusters are 
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interconnected through the “polyphenol” node (Cluster II), representing a pivot in the 
chemical computational studies of the last two decades. This third network encompasses 
the studies analyzed in this research (2001-2023). It underlines the importance of evaluating 
these phytochemicals in therapeutic targets of AD with the assistance of computational 
theoretical analyses.
 The above is reflected in several reports, such as Benchikha and collaborators 
(2022), which describe an experimental model to evaluate different biological activities, 
i.e. antioxidant, hypoglycemic, and cholinesterase inhibition, enriched with chemical-
computational analyses implementing molecular docking techniques. Moreover, 
these in silico analyses can approximate the binding affinity of the phenols present 
in the extract of zamarilla (Teucrium polium L) against acetylcholinesterase (AChE) and 
butyrylcholinesterase (BChE) enzymes, which are first-order therapeutic targets in the 
progression of AD. Another in silico report sought to evaluate 3150 phytochemicals of 
diverse origins, including phenolic compounds, to identify secondary metabolites with 
inhibitory potential against the BACE-1 (-secretase) enzyme. The pipeline included a 
first screening phase based on pharmacokinetic profiles to select metabolites that met 
the predefined ranges in ADME processes (absorption, distribution, metabolism, and 
excretion). Molecular docking analysis was performed to select metabolites by comparing 
their binding energies with reference drugs. Subsequently, electronic effects and reactivity 
at the active site of the BACE-1 enzyme were evaluated using hybrid density functional 
theory (DFT). Taken together, in silico / computational tools allowed the identification 
of seven compounds (shinflavanone, glabrolide, glabrol, prenillicoflavone A, macleanine, 

Figure 3. Generalized bibliometric network based on the most representative items of the last two decades 
(2001-2023). In the network, two apparent aspects can be identified that start from a common origin 
(polyphenols), which correspond to studies carried out on phenolic compounds, and the second to mechanisms 
of action on pathogenic events in Alzheimer’s disease (green and red), respectively.
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3a-dihydro-cadambine, and volvalerelactone B) that exhibited inhibitory potential against 
BACE-1.
 However, in silico results should be subjected to experimental validation (in vitro and in 
vivo), as suggested by Arif et al., 2020. Barai et al., 2018 showed that docking and molecular 
dynamics analyses are tools that can be employed as tools to predict, compare, and target 
inhibitory bioactivities of phenol bergenin towards specific therapeutic targets related to 
Alzheimer’s disease, such as acetylcholinesterase (AChE), butyrylcholinesterase (BuChE), 
Tau protein kinase 1 and -secretase (BACE-1). The ability of bergenin to exhibit dose-
dependent inhibitory bioactivity, specifically about AChE and BuChE enzymes, was 
addressed in this report. Interestingly, the results from animal models (in vivo), showed 
a significant reduction in neuro-inflammation, suggesting a remarkable improvement in 
cognitive function in bergenin-treated rats. Consequently, it is pertinent to suggest that in 
silico analyses facilitate the prediction of the bioactivity of phenolic molecules on specific 
molecular targets, such as enzymes related to dementia. Through both in vitro and in vivo 
assays, these compounds have demonstrated their capacity as bioactive molecules with 
promising pharmacological applications. Likewise, it is worth noting that in silico analyses 
enabled massive screening of secondary metabolites, resulting in the identification of specific 
phenols with activity on crucial Alzheimer’s disease (AD) related targets. Furthermore, 
these computational approaches provided accurate predictions of anti-Alzheimer’s 
bioactive activities and contributed to a deeper understanding of the mechanisms of action 
of phenols in this disease (Monteiro et al., 2018; Cruz-Vicente et al., 2021).

The impact of chemical-computational tools on drug Discovery
 Drug development has undergone remarkable advances over the years. The traditional 
approach consists of evaluating the efficacy of secondary metabolites through a process 
that involves three fundamental stages, as shown in Figure 4. The first of these stages is 
discovery, in which the identification of candidate molecules and their subsequent synthesis 
is carried out. This process begins with a broad chemical space to illustrate the magnitude 
of the challenge to be considered, and according to other models, the starting point is 9,000 
molecules, which will eventually require four to nine years of experimental research (De 
la Calle, 2009). The second stage is known as the preclinical stage and involves profiling 
a more manageable and economically viable set of molecules. In this phase, the number 
of molecules is significantly reduced to around 100 (less than 1%). These molecules are 
subjected to in vitro assays, which allows for the identification and discarding of those 
chemical units that lack biological activity. In this phase, screening is performed on in 
vitro models in line with their biochemical characterization, which allows for refining the 
selection of candidates with therapeutic potential in a time interval of three to four years 
of analysis (Hernández Cabanillas, 2020). In the clinical phase, ca. five molecules undergo 
rigorous evaluations in patients, and only one of them manages to meet the necessary 
regulatory requirements to be introduced into the market (Saldívar-González et al., 
2017). This final stage can extend over a period that can be around ten years of clinical 
explorations in animal models and, finally, be transferred to human candidates (Carranza-
Aranda et al., 2019).
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 This lengthy drug development process can take up to 15 to 18 years before a drug 
is approved (De la Fuente, 2009; Hernández Cabanillas, 2020). This extended duration 
poses significant challenges that include delayed response to public health emergencies, 
high costs that often fall on the consumer, limited access to treatments, disincentives for 
innovation, and the risk of treatments becoming obsolete, as has occurred in the case of 
Alzheimer’s disease (Goldman et al., 2018). Consequently, optimizing drug development 
processes and reducing costs without compromising drug quality have become imperative. 
In this area, pharmaceutical research, through computational chemistry, plays an essential 
role during drug development (Saldívar-González et al., 2017) with computer-aided design 
(CADD). The CADD has become a relevant approach that streamlines this process and 
allows the execution of predictive and comprehensive analyses of secondary metabolites, 
significantly reducing periods that can hover between three and twelve years of research 
(Figure 4). Furthermore, as a result, these challenges lead to the efficient selection, design, 

Figure 4. Comparative model of the classical (experimental) drug design versus the in silico model. 
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optimization, and repositioning of the most promising phytochemical candidates and their 
orientation toward fundamental molecular targets in Alzheimer’s disease progression (Lin, 
2022; Ece, 2023).
 In summary, in silico assays have improved the efficiency and cost-effectiveness of drug 
design, minimizing investment in laboratory experimental resources, and optimizing the 
management of new drug alternatives (Shaker et al., 2021). Using theoretical-computational 
approaches such as molecular docking and molecular dynamics has revolutionized the 
discovery of natural molecules by predicting how they bind and react in biological systems 
and improves efficiency in the identification of pharmacological compounds, accelerating 
the availability and reducing costs of effective treatments, offering an alternative to the 
classical method. 
 On the other hand, in stage I, or the discovery phase of the in silico approach, candidate 
molecules are obtained from open-access databases, mostly containing naturally occurring 
compounds (Önder et al., 2023). Then, through computational execution, structural 
similarity studies are carried out, and affinities are calculated using techniques such as 
docking (D), molecular dynamics (MD), and absolute binding free energy (ABFE). These 
techniques allow the identification of potential ligands with the ability to interact and bind to 
therapeutic targets, as depicted in Figure 4. In stage II, corresponding to drug development 
(Geerts & Vander Heyden, 2011), theoretical-computational predictions are carried out to 
estimate and optimize ADME-Tox pharmacokinetic properties (Absorption, Distribution, 
Metabolism, Excretion, and Toxicity). These processes are fundamental in drug research 
and development (Cerny et al., 2023), as they predict possible drug interactions with the 
organism through the calculation of ADME-Tox properties, thus providing a detailed 
profile of their efficacy and safety. Computational calculations play a crucial role by ruling 
out inefficient, nonspecific, toxic or unstable molecules (Bruno et al., 2019; Więckowska et 
al., 2020). With this, the allocation of resources and time to discover new natural molecules 
with pharmacological potential in neurodegenerative diseases can be optimized (Loele et 
al., 2022). In Phase III, chemical-computational analyses have enabled the repositioning 
and optimization of drugs, with successful examples such as the case of lopinavir, a drug 
initially designed to treat HIV-1 infection. This drug was redirected to emergency health 
care to treat severe acute respiratory syndrome (SARS) caused by COVID-19 (Mohamed 
et al., 2021; Ramirez Salinas et al., 2023).
 In this review, we have evaluated the scientific evidence related to the effects of phenols, 
a group of secondary metabolites of plant origin, in preventing and treating Alzheimer’s 
disease, the most common form of dementia worldwide. The results of this analysis indicate 
that phenols present therapeutic potential in addressing Alzheimer’s disease, given their 
remarkable antioxidant, anti-inflammatory, and neuroprotective properties and ability to 
modulate cell signaling. Despite these promising findings, it is worth noting that some 
reviewed studies have presented shortcomings and contradictions. Therefore, further 
research in this field is mandatory for a more complete understanding of the benefits and 
limitations of phenols in Alzheimer’s disease. 
 Epidemiological studies reviewed have revealed an inversely proportional relationship 
between the consumption of phenol-rich foods, such as tea, coffee, wine, chocolate, and 
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fruits, and the risk of developing Alzheimer’s disease (Pintać et al., 2022; Rivero-Pino et al., 
2023). These results support the hypothesis that phenols may prevent or delay the onset 
of this disease by protecting neurons from oxidative stress and inflammation, two critical 
pathogenic factors in Alzheimer’s disease (Cherbuin et al., 2022; Juiz & Lenarz, 2023). 
However, it is fundamental to recognize that these studies have certain limitations. These 
include indirect measures to assess phenol consumption, variability in diagnostic criteria, 
and the difficulty in establishing a robust causal relationship between exposure and effect. 
Therefore, there is a clear need for more rigorous and specific epidemiological studies. 
These studies should assess the consumption of individual phenols or groups of phenols, 
employ biomarkers for both exposure and effect, standardize models for the administration 
of phenols (Ohishi et al., 2021), and conduct long-term follow-up of participants to confirm 
detected changes in the incidence and progression of Alzheimer’s disease.
 The in vitro and in vivo studies reviewed provide evidence of the molecular and cellular 
mechanisms through which phenols may exert a beneficial effect on Alzheimer’s disease 
(Phan et al., 2019). These investigations demonstrate that phenols can reduce the formation 
and aggregation of amyloid and tau proteins, which are responsible for the growth of senile 
plaques and neurofibrillary tangles, respectively. Such aggregates are distinctive histological 
features in AD brains (Barai et al., 2018). In addition, phenols can improve mitochondrial 
function (Mthembu et al., 2021; Flannery & Trushina, 2019), restore calcium homeostasis 
(Palmerini et al., 2005;) and induce autophagy (Michałowicz et al., 2018; Hung & Livesey, 
2021). Moreover, phenols have demonstrated the ability to promote neurogenesis (Corona 
& Vauzour, 2017) and to modulate the activity of various cell signaling pathways, acting 
on transcription factors (CREB), insulin receptor substrate (IRS), signal transducers, and 
activator of transcription (STAT3), among others. These pathways play a significant role in 
the progression of Alzheimer’s dementia and other neurodegenerative diseases. (Kooshki 
et al., 2023). However, it is worth noting that these in vitro and in vivo studies have notable 
drawbacks, such as lack of specificity and selectivity of phenols, assessment of synergistic 
activity in crude extracts, variability in experimental models, lack of randomized controlled 
trials, and lack of translation of results to the clinical level (Karim et al., 2020). Therefore, 
further experimental support in representative models under standardized conditions is 
always required. It also includes considering the activity of phenols in assays that reproduce 
the pathological conditions of Alzheimer’s disease.
 A clear trend shown in the scatter plot (Figure 1A) presents a steady increase in 
papers incorporating computational theoretical studies over time. In addition, through 
the generation of co-occurrence networks, the leading research approaches during the 
last two decades have been identified. From 2001 to 2011, the focus was on questions 
related to genetic diagnostics and causation (Cluster III) and exploring various protein 
hypotheses (Cluster II). Collectively, these investigations have moved to the development 
of an integrative model of Alzheimer’s disease on set and progression (Cluster I). In the 
second period, which covered from 2012 to 2023, the co-occurrence network revealed an 
exponential increase, with the implementation of chemical-computational tools and the 
study of phenols as inf lection points, leading to a radical change in the focus of research, 
which emphasizes the identification of protein targets of Alzheimer’s disease (Cluster III), 
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where in silico analyses allowed to model phenolic compounds’ affinity and intermolecular 
interactions, i.e., inhibition mechanisms of AChE and other enzymes (Cluster II and IV). 
The previous proposes a multidisciplinary approach that addresses different pathogenic 
events in Alzheimer’s disease (Cluster I) by studying bioactive molecules such as phenols. 
The in silico publications reviewed highlight the applicability of theoretical, computational 
calculations as complementary tools for the design and optimization of new phenol-
based drugs to treat Alzheimer’s disease, with computational techniques such as virtual 
screening, molecular docking, molecular dynamics, and pharmacological modeling the 
selection of ligands that interact with enzymes involved in AD is possible (Barai et al., 
2018; Arif et al., 2020), as well as, prediction and optimization of pharmacokinetic and 
pharmacodynamic properties of the potential phenolic drug (Kumar & Ayyannan, 2022; 
Sahadevan et al., 2022). Integrating computational chemistry into the classical drug 
design model represents an opportunity to foster innovation and develop more effective 
and accessible treatments for patients suffering from multifactorial neurodegenerative 
diseases, such as Alzheimer’s.

CONCLUSION
 This review highlights the role of phenols as promising candidates in developing new 
drugs for Alzheimer’s dementia due to their multiple beneficial effects on general health, 
particularly those reported in mitigating pathogenic progression. However, it is also clear 
that research in this field still needs improving since systematization and deepening must 
come from multidisciplinary and integrative studies (epidemiological data, molecular 
investigations, and computational studies). Epidemiological studies may lack precision and 
traceability in some cases. In contrast, in vitro and in vivo studies, although promising, need 
to address specificity issues and validate their findings in controlled clinical trials. On the 
other hand, in silico studies have demonstrated efficiency and cost-effectiveness but require 
experimental substantiation and validation. Consequently, collaborative epidemiological, 
in vitro, in vivo, and in silico studies should be conducted as an integral part of the research 
and development process for new drugs. This interdisciplinary collaboration will broaden 
the understanding of the effects of phenols in Alzheimer’s disease and promote significant 
advances in the search for effective and accessible treatments for patients facing this 
multifactorial neurodegenerative disease.
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