
Colegio de
Postgraduados

83

Prediction of weaning weight of grazing beef by 
machine learning
Guevara-Escobar, Aurelio1; Cervantes-Jiménez, Mónica1*; Lemus-Ramírez, Vicente2; 
Kunio-Yabuta-Osorio, Adolfo2; García-Muñiz, José G.3

1 Universidad Autónoma de Querétaro, Facultad de Ciencias Naturales, Av. de las Ciencias s/n, Juriquilla, 
Santiago de Querétaro, Querétaro, México, C. P. 76230.

2 Universidad Nacional Autónoma de México, Centro de Enseñanza, Investigación y Extensión en Producción 
Animal en Altiplano CEIEPAA, Facultad de Medicina Veterinaria y Zootecnia, Tequisquiapan, Querétaro, 
México, C.P. 76790. 

3 Universidad Autónoma Chapingo, Departamento de Zootecnia, Posgrado en Producción Animal, Carretera 
México-Texcoco km 38.5, Chapingo, Estado de México, México, C. P. 56230.

* Correspondence: monica.cervantes@uaq.mx

ABSTRACT
Objective: To develop and validate models using the variables available at calving to predict the weaning 
weight (WW) of grazing beef calves.
Design/Methodology/Approach: The WW was modelled using machine learning (ML) algorithms and 
ordinary least squares (OLS). The model included three variable availability scenarios and the best fit was 
identified using the coefficient of determination (r2), the mean squared error, and the bias.
Results: ML algorithms achieved a better fit than OLS in all scenarios. ML had a 0.70, 0.67, and 0.78 r2 
when the following modelling variables were available: B) dam age at calving and parity, calf sex and weight, 
weaning age, and calving date; I) in addition to the previous variables, dams’ weight at calving, type of calving, 
calf and cow racial purity; and A) in addition to the all the previous variables, type of service, cow and sire tags 
and sire breed.
Study Limitations/Implications: The ML and OLS models were representative of a specific database. 
Modelling based on regional or national data should be studied. Using the lowest number of variables in this 
study, ML in scenario B provided an acceptable fitting for the prediction modelling of the WW of grazing beef 
calves.
Findings/Conclusions: ML performed better than OLS, without causing an overfitting, based on the 
suitability of the WW predictions regarding a database that was not used to train the model.
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INTRODUCTION
 Beef production will amount to 75 Mt in 2030 (a 5.8% increase), in response to the 
growing demand for animal products (OECD/FAO, 2021). Although grazing animal 
production pollutes the environment (Steinfeld et al., 2006) and there are proposals for 
human feeding based on meatless meals, beef production has a significant sociocultural 
aspect and it is also an option in arid ecosystems where foraging of the primary production 
is the main strategy. In the short term, improving the efficiency of the beef production 
plans has been visualized as a way to address climate change (Chang et al., 2021).
 Weaning weight (WW) is used to evaluate beef production cows. WW is influenced by 
genetic effects (Koots et al., 1994), as well as the maternal ability and environmental factors 
(Kennedy and Henderson, 1975). The role of WW is not limited to genetic improvement 
and production planning and projection; WW is also a parameter that defines the cows’ 
contribution to the profitability of the commercial operation (Harris and Newman, 
1994). Studies on milk yield, early weaning, and other cow-calf production aspects are still 
under study (Mulliniks et al., 2020) and are needed to identify optimization parameters 
(Thompson et al., 2020; Greenwood, 2021).
 The relation of WW with other production variables defines the nature of production 
records and, therefore, enough data must be collected. Weaning age, calf sex, dam age 
at calving, and other variables are used to standardize WW; however, local or temporal 
conditions also impact its modelling (Harris and Newman, 1994). Achieving the target 
weaning weight is fundamental for grazing production, because pasture supply is 
restricted. Consequently, WW prediction models based on specific changes to predictor 
variables (such as weaning age) are important, once other effects have been adjusted. 
Once the production projection has been determined, the plan can be modified to 
suit the environmental resources available and their uncertainty. Coupling animal 
production plans with environmental limiting factors is fundamental to adapt to certain 
conditions (such as climate change) and to promote sustainability (Taylor et al., 2020; 
Greenwood, 2021).
 Statistical modelling traditionally uses linear or non-linear regression, likely including 
polynomial expressions with one or more explanatory variables. The best fitting for these 
models is achieved with the minimization of the error variance or the maximization of 
a likelihood function. Bayesian methods are another alternative, particularly regarding 
the meta-analysis of the data or in those cases in which statistics assumptions are not 
fulfilled (McElreath, 2020). Recently, as a result of advances in computing power, machine 
learning (ML) algorithms have proven to be relevant for predictive modelling and data 
exploration. Both ML models and models solved through ordinary least squares (OLS) 
have their advantages, but they also have limitations. Therefore, comparing methodologies 
is important to select the best tool; at the same time, a simple model capable of providing a 
faithful representation of reality must be established. Interpretability is still a pending task 
in ML and, overall, they are a black box model: a solution is achieved, but exactly how it 
was achieved is unknown.
 In this study, WW predictive models were trained and validated based on the variables 
available at the calving. Variables that became available after the calving were not used for 
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predictive purposes. The following hypothesis was set forth: a ML algorithm would predict 
WW better than OLS regression. A database of Limousin beef cows and their grazing 
calves was used to achieve the objective of this study.

MATERIALS AND METHODS
 A beef herd grazing mixed pasture was studied at Centro de Enseñanza, Investigación 
y Extensión en Producción Animal en Altiplano, Facultad de Medicina Veterinaria y 
Zootecnia, Universidad Nacional Autónoma de México (UNAM). The site is located at 20° 
36’ 13.88” N and 99° 55’ 02.91” W, at an altitude of 1,913 m. The weather is temperate, 
with a 512 mm average annual rainfall and a 17.5 °C average temperature, with frost from 
October to February, warm summers, and mild winters.
 Cows and their calves grazed on a paddock divided with an electric fence and with 
center-pivot irrigation. The pasture was established in 2004 with a mixture of species: 
alfalfa (Medicago sativa), cocksfoot grass (Dactylis glomerata), fescue (Festuca sp.), and perennial 
ryegrass (Lolium perenne); alfalfa was dominant by 50%. Average grazing and rest periods 
were 2.7 and 37.5 d, respectively. The cows were sporadically fed with good quality hay 
when handled on yards. At the beginning and during the weaning, the calves were supplied 
variable amounts of hay and concentrated feed. Cow feeding was exclusively on grazing. 
The productive model included year-round-calving. Weaning groups were established 
and the calves were kept apart from the grazing group; however, heifers were returned to 
the grazing group a few days later, until mating and becoming pregnant. Once a positive 
pregnancy diagnosis was obtained, they remained in the grazing group until they gave 
birth and considered cows and so forth.
 This study included the 2004-2010 records of an 88-Limousin cow herd, with 159 births 
(up to 5 calvings per cow). The Limousin calves were the result of artificial insemination 
(AI) and natural mating (NM); additionally, eleven crossbred calves were born from 
artificial insemination. The response variable was the weaning weight (WW) of calves. The 
following predictor variables were recorded: cow and sire tags (representing ancestry), age 
and weight of dams at calving, type of calving, dam parity, type of service and sire breed, 
calf sex, calf weight and calnving date, weaning age, and racial purity of the calf and the 
cow. Weaning age is a variable defined after calving, but it was included as a WW predictor 
variable, since it determines weaning management.
 The R language was used to develop the codes (R Core Team, 2013). Eighty-percent of 
the records were randomly chosen and OLS and ML models were developed, combined 
with three modelling variable availability scenarios: basic (B), intermediate (I), and wide 
(A), according to Table 1. In order to prove the hypothesis, the ML model should have a 
better performance than OLS in all these scenarios.
 The OLS models were developed with a stepwise procedure in the R software, using the 
lm, stepAIC, and VIF functions. The stepAIC function of the MASS package chooses the 
best model using the Akaike information criterion. The VIF function of the car package 
determines the variance inflation factor (VIF); a VIF10 threshold was used to eliminate 
variables from the model and to avoid multicollinearity (Fox and Weisberg, 2018). Using 
the Pratt index, the calc.yhat function of the yhat package determined the importance of 
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the explanatory variables in the variance portioning. The models were validated with the 
remaining 20% of the records. The goodness of fit between observed and predicted values 
was measured using the coefficient of determination (r2); the square root of the mean 
squared error (RMSE) was calculated using the RMSE function of the Metrics package; 
and the bias was measured following Bland and Altman (2010) with the blandr package.
 The same records selected for the OLS training were used to build the ML models. 
A stack of models based on ML algorithms was generated with the AutoML function of 
the H20 package v.2.32.14 (Hall et al., 2019). The ML approach takes into consideration 
several algorithm realizations: deep learning (DL), feedforward artificial neural network 
(DL), general linear models (GLMs), gradient-boosting machine (GBM), extreme gradient 
boosting (XGBoost), default distributed random forest (DRF), and extremely randomized 
trees (XRT). The AutoML function trains individual models, as well as two model 
assembles: the first assemble is developed from all the algorithms used in the generated 
models; the second assemble only takes into consideration the best model of each class 
or family of algorithms. Often, both assembles achieve better predictions than individual 
algorithms. The deviance was used as a goodness of fit statistic in order to sort the models 
within the ML model stack, as well as a criterion to stop the model optimization. The 
best model assemble or the best individual model were used to predict WW in the records 
reserved for validation (20%). The h2o.explain function of the H2O package was used to 
determine the importance of the variables of the individual models; however, it cannot be 
applied to a model assemble (Hall et al., 2019). The same goodness of fit measurements 
was used to compare the OLS and ML models; the best modelling method would have the 
highest r2, the lowest RMSE, and the lowest bias. In order to interpret the contribution of 

Table 1. Predictor variable used for machine learning or ordinary least squares 
modelling with three variable availability scenarios: Basic (B), Intermediate (I), and 
Wide (A).

Predictor variable Abbreviation B I A
Cow tag cow x

Sire tag sire_tag x

Sire breed sire_br x

Dam age at calving (months) dam_age_cal x x x

Dam weight at calving (kg) dam_ weight_cal x x

Type of calving 1 type_calving x x

Type of service 2 type_service x

Calf sex calf_sex x x x

Calf weight (kg) calf_weight x x x

Calving date (month) calving_date x x x

Weaning age (days) weaning_age x x x

Race purity of the calf (%) purity_calf x x

Race purity of the cow (%) purity_cow x x

Dam parity parity x x x
1Normal or difficult calving. 2Normal mating (NM) or artificial insemination (AI).
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each ML model variable, its SHAP (Shapley Additive exPlanations) values were estimated, 
using the h2o.explain function.

RESULTS AND DISCUSSION
 The training data base was comprised of 127 records (118 Limousin and 9 Angus-
Limousin calves). The validation database included 32 records (29 Limousin and one of 
each Angus, Belgian Blue, and Blonde D’Aquitaine crosses). Both databases had similar 
average values for the calf quantitative variables (Table 2). Both databases showed a 3% 
occurrence of difficult calving. The percentage of IA services was 34 and 40 for training 
and validation data, respectively. The only major correlation between the predictor 
variables was recorded between parity and dam_age_cal (r0.82); the correlations for all 
the other variables were lower than r0.23, except for purity_calf and purity_cow, which 
had a r0.26 correlation.
 ML obtained a better validation than OLS in all scenarios (Table 3). All the goodness 
of fit measurements favored ML, although bias should be chosen before the coefficient 
of determination as a goodness of fit criterion (Bland and Altman, 2010). The ML of 
scenario A obtained the best validation, according to the goodness of fit measurements; 
likewise, the OLS performed better in this scenario than the OLS of other scenarios. 
In scenario A, the highest OLS error was also detected in the graphic representation 
of the observed versus the model-estimated WW values (Figure 1a and Figure 1b). The 
estimated data showed less dispersion in the ML model, both during the training and the 
validation phases (Figure 1c and Figure 1d); a similar phenomenon was recorded in the 
other scenarios (data not shown).
 In all three scenarios, the best representation with the ML always was the model 
assemble; additionally, the best individual models always were of the XGBoost type —a 
decision tree type algorithm. In scenario A, the deviance of all the model assembles was 
472.87 and the deviance for the best individual model was 494.21. In scenario I, the 
assemble for the best family was 649.53 and the deviance for the best individual model was 

Table 2. Average ( y ) and standard deviation (s) of the variables in the weaning weight (WW) model training and validation databases.

Variable

Training Validation
Female Male Female Male

y s y s y s y s
dam_ weight_cal1 (kg) 637 57.2 654 54.9 627 76.3 676 52.0

Dam _wean_we2 (kg) 654 48.7 602 50.6 509 49.2 615 52.3

dam_age_cal (months) 58 26.9 64 29.2 65 36.2 65 26.6

calving_weight (kg) 37 3.6 39 4.1 36 3.2 39 3.9

weaning weight (kg) 241 34.6 244 46.2 230 42.9 242 50.9

weaning age (days) 201 20.9 198 18.8 205 22.4 194 25.6

GDP3 (kg) 1.02 0.18 1.03 0.21 0.96 0.26 1.05 0.21

n 62 65 17 15
1Weaing weight, 2Dam_wean_we: dam weight at weaning, 3GDP: daily weight gain of the calf; these three variables were not used in the 
modelling.
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Table 3. Goodness of fit statistics between predicted and observed weaning weight (WW) values, using the 
training database, with internal and external validation: root of the mean square error (RMSE), residual 
standard error (RSE), coefficient of determination (r2), bias, and interval of confidence (IC). The models 
used were machine learning (ML) algorithms and multiple regression least squares (OLS). The scenarios 
refer to the availability of explanatory variables for the modelling: Basic (B), Intermediate (I), and Wide (A).

RMSE r2 Bias IC
Scenario B
ML Training 13.88 0.93 7.51 5.49 9.53

ML Validation 23.20 0.70 0.98 10.32 8.37

OLS Training 34.26 0.32 0.00 5.92 5.92

OLS Validation 32.88 0.39 4.90 18.01 8.20

Scenario I

ML Training 17.39 0.82 0.27 2.73 3.28

ML Validation 25.49 0.67 9.36 18.92 0.19

OLS Training 33.53 0.35 0.00 5.79 5.79

OLS Validation 32.54 0.41 5.89 18.79 7.01

Scenario A
ML Training 5.20 0.99 3.97 3.38 4.56

ML Validation 21.75 0.78 0.50 8.46 7.46

OLS Training 32.61 0.35 0.00 5.75 5.75

OLS Validation 36.28 0.36 5.67 18.79 7.46

Figure 1. Ratio of the recorded and predicted WW values in scenario A, according to the fit of a multiple 
regression model with ordinary least squares (OLS) for the training (a) and validation (b) databases. Figures c 
and d belong to the machine learning (ML) model. The diagonal line stands for the 1:1 ratio.
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678.30. In scenario B, the assemble for the best family was 538.06 and the deviance for the 
best individual model was 670.14. The lowest deviance values indicate a better model.
 The most important variables for all ML and OLS models were: weaning_age, calf_
weight, dam parity, and dam_age_cal (Table 4). Racial purity variables were important 
for ML in scenarios I and A. Ancestry variables were only important for ML in scenario 
A. By itself, calf sex was not significant in any model. In the ML model, the importance of 
breeding bulls was significant; this phenomenon is discussed later on.
 Scenario A was better than I for ML, because the ancestry variables were taken into 
account; r2 improved by 0.11 and both the bias and the interval of confidence were 
lower (Table 3). In the ML of scenario A, the sires with more progeny were important, 
particularly Ambition, whose offspring were light; meanwhile, Vet Mosco’s offspring were 
also light, but it did not have the same importance (Table 5). The importance of breeding 
bulls for ML was closely linked to this database. Consequently, the WW dependence on the 
variables of scenario I was analyzed. Scenario I is an overall model with greater potential 
application, although it had a greater bias.
 Management decisions are based on the weaning age variable and the dependency of 
WW on this variable showed a sigmoid shape in various ML models; however, a GLM 
model (such as OLS) had a linear and proportional dependency (Figure 2a). Therefore, 
there must be a window of opportunity where weaning age (200 to 225 d) had a significant 
influence and then, other factors determined WW. In the case of ML, Figure 2 shows 
similar dependency relationships between other variables of importance for the models, 
which were different in the case of the GLM. The vertical bars show the frequency of the 

Table 4. Importance of the explanatory variables included in the machine learning (ML) or ordinary 
least squares (OLS) models in three explanatory variable availability scenarios, according to Table 1. The 
importance of the category variables is associated with a specific variable value.

Predictor variable
ML OLS

B I A B I A
dam_age_cal 0.15 0.12 0.02 0.08 0.06 0.07

dam_ weight_cal 0.08

calving_weight 0.28 0.17 0.10 0.06 0.07 0.08

calving_date 0.20 0.10 0.04

weaning_age 0.25 0.39 0.18 0.38 0.38 0.34

purity_calf 0.07 0.01

purity_cow 0.03 0.03

parity 0.11 0.10 2.17E-03 0.48 0.40 0.40

calf_sex: Female 0.02

type_service: NM 4.59E-05 0.09 0.11

calf_sex: Male1

Sire: AMBITION 0.48

Sire: VET_MOSCO 0.02

Sire: ROBLE 0.01
1The breedings bulls were only important in the case of male calves. B: Basic, I: Intermediate, A: Wide.
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observations, together with the dependency graph, they point out how the WW prediction 
per model changes according to the accumulated evidence. Consequently, ML did not 
have a strong dependency on the increase of dam_age_cal (dam age at calving), because 
few older cows were recorded (Figure 2c). 

Table 5. Weaning weight adjusted to 205 d (kg) of female (H) and male (M) descendants of the breeding bulls 
included in Table 4. Number of calves (n), average ( y ), and standard deviation (s) for the complete database 
under study. Other breeding sires are not included.

Sire Race
F M

n ӯ y s n ӯ y s

Ambition Limousin 11 138.2 25.9 19 147.4 23.3

Vet Mosco Limousin 13 151.1 31.4 14 145.9 35.8

Memin Angus 3 155.6 26.5 6 153.2 19.8

Turcio Limousin 7 154.2 21.3 8 156.5 18.8

Sucha Limousin 16 169.6 21.2 13 157.3 32.1

Roble Limousin 6 174.6 32.8 3 152.4 51.2

Highlander Limousin 4 162.5 27.9 6 179.6 15.4

Hato 79 161.6 28.9 80 154.8 30.9

Figure 2. Partial dependency in scenario I for weaning weight (WW) according to: a) weaning age, b) calf weight, c) dam age at calving, 
and d) calving date. All the other variables remained fixed, assuming a lack of correlation with other explanatory variables. The bar graph 
points out the frequency of the data in the model validation database.
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 WW depended on calving_date during the summer. The uniform data frequency 
throughout the year was remarkable and therefore, ML algorithms do not simply depend 
on a greater number of data (Figure 2d). A potential increase in food quality and quantity 
during the summer suggested a greater milk yield and, consequently, a greater WW. 
Greater attention should be paid to these variables along with the changes in the weight 
of the dam during lactation. Nevertheless, measuring them in commercial operations is 
a difficult task. The ML models presented can be part of a reproductive planning and 
pasture budgeting strategy contributing to the optimization of the production plan, based 
on several important variables: seasonal variation of the production, longevity of the cows, 
and use of chosen breeding bulls.

CONCLUSION
 The ML model assemble predicted the WW with a lower error and bias. It is an 
alternative tool to the traditional OLS, regardless of the number of variables available 
to train the model, even when only production variables that are essential for any cattle-
raising operation are available. The best machine learning algorithm was XGBoost.
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