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ABSTRACT
Objective. To validate a simulation model which enables the estimation of wheat (Triticum aestivum L.) 
production, based on climatic variables in the lower Mayo River basin in Sonora, Mexico.
Design/methodology/approach. The Soil and Water Assessment Tool (SWAT) Crop Yield simulation model 
was used to estimate productive wheat yields. The model was fed with climatic data for the 1979-2014 period, 
provided by the National Centers for Environmental Prediction. Subsequently, the results were validated using 
the Nash-Sutcliffe, PBIAS, and R2 statistics. The predictive capacity of the model was validated in four of the 
six Hydrological Response Units with agricultural land in the study area: 26, 27, 28, and 31.
Study limitations/implications. The model does not include adaptation measures and future production 
scenarios based on climate data estimation must be developed.
Findings/conclusions. The influence of climate change on wheat production has been confirmed; the 
predictive model used is an important tool that can be adjusted and adapted to other regions and production 
systems.
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INTRODUCTION
 The countries that signed the Paris Agreement in 2016 accepted that “the fundamental 
priority of safeguarding food security and ending hunger, and the particular vulnerabilities of food 
production systems to the adverse effects of climate change” (Food and Agriculture Organization 
of the United Nations (FAO) (FAO, 2017)). This commitment endorsed previous scientific 
positions that warned that the climate, in addition to being an essential determinant of 
agricultural productivity, was also its main source of risk (Antle, 2008). It was only until 
the late 20th century, that scientific activity developed models of the economic impact 
that climatic variations have on food production (Adams, 1989; Kane et al., 1992; 
Mendelsohn et al., 1994). Subsequently, analysis based on simulation models (Rötter et al., 
2018) confirmed the negative impact of climate on crop productivity (Intergovernmental 
Panel on Climate change (IPCC), 2019). Based on the exploration of tendencies, some 
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researchers predict sensitive repercussions in the food sector; Field et al. (2014), Huong 
et al. (2019), Mendelsohn et al. (2010), and Nelson et al. (2018) warn that, in the course 
of the 21st century, the effects of climate change could restrict: a) economic growth, b) 
food security, and c) the success of poverty reduction efforts. Given this scenario, it is 
increasingly important to develop appropriate methodologies that support the adjustment 
of agricultural activity, depending on the challenges presented by the modification of 
environmental factors, specifically those related to climate change.

Impact of climate change on wheat production
 Since the late 20th century, the argument for the negative effect of climate change on 
cereal production has been raised; scientists have warned that it will increase over the 
course of the 21st century (Rosenzweig and Parry, 1994). The most outstanding studies 
in this field include studies about the production of wheat —a crop that has been a staple 
food of humanity since the birth of civilization. Currently, 765 million tons of this grain are 
produced (FAO, 2021), confirming its historical relevance along with corn and rice.
 The study carried out by Mereu et al. (2021) stands out among the recent studies about 
the estimation of the impact of climate change on wheat cultivation. They used a simulation 
model to evaluate the effects of climate change on the production of durum and common 
wheat in Italy; their findings suggest that yields would decline mainly in southern Italy, 
while the north would benefit from higher rainfall regimes. In addition to temperature 
and precipitation, Zhang et al. (2017) included the following variables in their analysis: 
humidity, wind, and solar radiation. They estimated the degree to which these variables 
influenced wheat productivity. Their results reveal that climate change could negatively 
impact its production in China by up to 18.26% by the end of this century.
 Pequeno et al. (2021) and other authors simulated climate change impacts and global 
adaptation strategies for wheat, using new crop genetic traits —including increased 
heat tolerance and traits combined with additional nitrogen fertilizer applications—, 
as an option to maximize genetic gains. Their results predict that climate change will 
reduce global wheat production by 1.9% by mid-century. Hernández-Ochoa et al. (2018) 
projected wheat production in Mexico for 2050 simulating five climatic environments. 
All the scenarios reported yields falls, linked to the increase in temperatures; in rare cases, 
increases in production are explained by rainfall. Despite the vast range of studies on the 
subject, specific methodological strategies must be explored for each productive region to 
allow progress in climate change adaptation and mitigation issues. Within these lines of 
research, this article aims to validate a simulation model that estimates wheat production, 
based on climatic variables in the lower Mayo River basin in Sonora, Mexico.

MATERIALS AND METHODS
 The analysis area is the lower sub-basin of the Mayo River (5,397 km2), part of the Mayo 
River basin in Sonora, Mexico. It begins in the Adolfo Ruiz Cortines dam and its mouth 
flows into the Gulf of California (Figure 1). This space concentrates the substantive factors 
for wheat production, its main crop in terms of extension (62%) and value (46%) (Sistema 
de Información Agroalimentaria y Pesquera (SIAP), 2021).
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Description of the applied model
 The estimation of the variations in the productive yields of wheat was carried out 
based on an analysis structure supported by the Soil and Water Assessment Tool (SWAT) Crop 
Yield simulation model. It predicts the impact of soil and water management practices 
on processes such as sediment generation, erosion, and agricultural yields in a basin 
complex, with a variety of soils, land use, and management conditions over long periods 
(Neitsch et al., 2011). In physical terms, SWAT operates at the basin scale in continuous 
time, establishing the following parameters for daily simulations: hydrology, soil, use, 
a digital elevation model, and climate data. The model’s components include climate, 
hydrology, soil temperature, plant growth, nutrients, pesticides, and land management. 
Based on the spatially explicit parameterization, the model divides the territory into sub-
basins. In their turn, the sub-basins are divided into hydrological response units (HRUs), 
according to specific land type and use (Akhavan et al., 2010).
 The HRUs represent homogeneous spaces according to the area’s soil types and uses, 
vegetation cover, and slope. The disaggregation of the sub-basin into smaller entities 
allows the model to ref lect differences in evapotranspiration, soil types, vegetation 
covers, and their generation (Akhavan et al., 2010). In total, 31 HRUs make up the 
lower Mayo River basin; however, only six match agricultural soils; therefore, they 
constitute the core points of interest of this research. These are the 23, 26, 27, 28, 30, 
and 31 HRUs.
 The SWAT model uses a digital elevation model (DEM) map to describe the watershed 
and its Hydrologic Response Units. The Continuo de Elevaciones Mexicano 3.0 
(Instituto Nacional de Estadística y Geografía (INEGI), 2021) was used for this purpose. 

Figure 1. Mayo River Lower Basin.
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The land-use maps were obtained from the Portal de Geo información (Comisión 
Nacional para el Conocimiento y la Biodiversidad (CONABIO) (CONABIO, 2021)). 
Vector land use and vegetation data sets (scale 1:250,000 - series V) were used to classify 
the different soil types into hydrological groups, based on infiltration characteristics 
(CONABIO, 2021).

Cultivation, sowing dates, irrigation, and fertilizer application
 Forty winter wheat biophysical traits identified by SWAT were considered for wheat 
yield simulations. Based on the autumn-winter cycle technological package for wheat 
in Sonora (Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias 
(INIFAP), 2017), this crop is established on November 15 of each year and ends on May 
2 of the following year. The volumes and dates of application of irrigation and fertilizers 
also come from the information contained in the above-mentioned technological 
package.

Weather
 The Model was fed with the records of the Climate Forecast System Reanalysis (CFSR), 
obtained by the National Centers for Environmental Prediction (NCEP) over a 35-year 
period (1979-2014). In the study area, information was obtained from six weather stations; 
temperature records (maximum and minimum), precipitation, relative humidity, wind, 
and solar radiation were monitored daily. The information (including its georeferencing) 
was incorporated into the database entered into the model.

Model validation
 To validate the model, the estimated data of the 23, 26, 27, 28, 30, and 31 HRUs were 
contrasted with data observed in the Distrito de Desarrollo Rural (DDR) de Navojoa, 
taking into account the regionalization made by Secretaría de Agricultura y Desarrollo 
Rural (SADER) for the 1992-2003 period. The six HRUs are located within the DDR 
territory; however, since there is no accurate production information for each of them, the 
information will be contrasted with the district’s aggregate production data. Validation 
was performed based on three procedures or statistics:
 a. Nash-Sutcliffe efficiency (NSE), which is expressed as:
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indicating how well the observed versus simulated data set fits the 1:1 line. It ranges 
between  and 1, with NSE1 being the optimal value. Values between 0.0 and 1.0 
are generally considered to be acceptable performance levels, while 0.0 values indicate 
that the mean observed value is a better predictor than the simulated value, indicating 
unacceptable efficiency (Moriasi et al., 2013).



81 Agro productividad 2022. https://doi.org/10.32854/agrop.v15i1.2136

 b. PBIAS, expressed as: 
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where ft is the simulated value of the model at time t; yt is the data value observed at time 
t (t1, 2,..., T ). PBIAS measures the average tendency of the simulated data to be larger 
or smaller than the observed data (Gupta et al., 1999). Small-magnitude PBIAS values are 
preferred. Positive values indicate an overestimation bias of the model and negative values, 
an underestimation bias (Gupta et al., 1999).
 c. R2, represented by the following equation:
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where y  is the mean of the observed data values for the entire evaluation period and 
f  is the mean of the simulated data values for the same period. The other symbols 

have the same meanings defined for the above equation. The value of R2 is equal to the 
square of the Pearson product-moment correlation coefficient (Legates and McCabe Jr., 
1999). R2 has a range from 0.0 to 1.0. The highest values are equivalent to better model 
performance.

RESULTS AND DISCUSSION
 The predictive model of the wheat production behavior generated estimates for six of 
the 31 HRUs identified in the lower Mayo River basin: 23, 26, 27, 28, 30, and 31. Since 
the model overestimated the productive yields of wheat, the information was presented as 
production indexes, which contribute to forecast the behavior of the dependent variable 
(productive yield), based on the independent variables (specifically, weather) (Table 1).

Table 1. Production index (1992-2003).

Region
Average Standard deviation

Observed Estimated observed Estimated
HRU23

0.9545

1.1483

0.0792

0.2969

HRU26 0.9425 0.0658

HRU27 0.9423 0.0658

HRU28 0.9394 0.0823

HRU30 1.2656 0.3515

HRU31 0.9389 0.0797

Source: Own elaboration.
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 The first analysis identifies similar behaviors between estimated and observed 
production in four of the six HRUs analyzed: 26, 27, 28, and 31. In contrast, the 23 and 30 
HRUs have divergent results. For validation, three statistics were calculated: Nash-Sutcliffe 
efficiency, PBIAS (bias), and R2 (Table 2).
 The calculation of these statistics confirmed, by inference, the analysis of the mean 
and standard deviation. The predictive capacity of the model is validated in the 26, 27, 
28, and 31 HRUs. In the case of Nash Sutcliffe, a 0 coefficient is considered acceptable. 
Meanwhile a 20% BIAS probability is enough, and the closer that R2 is to unity, the 
greater the resemblance between the real and observed behavior of the variable. A graph 
of the similarities can be seen in Figure 2. Once the predictive structure was validated, 
the influence of climatic variables on wheat production was analyzed. A seven-climatic 
variable Pearson correlation analysis was carried out for the 1980-2013 period (Table 3), 
confirming their influence on the behavior of the productive yields of the crop. On the 
one hand, precipitation and evapotranspiration were directly related to wheat yields: the 

Table 2. Statistics used for model validation.

RHU Nash-Sutcliffe PBIAS R2

HRU23 77.5 273.00% 0.2825

HRU26 0.7 12.80% 0.7991

HRU27 0.69 13.10% 0.7995

HRU28 0.53 17.30% 0.5584

HRU30 201.25 434.40% 0.6453

HRU31 0.49 18.30% 0.6675

Source: Own elaboration.

Figure 2. Wheat production index. Selected HRUs.
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Table 3. Correlation coefficients between productive yields and climatic variables.

RHU

Annual 
precipitation Evapotranspiration Temperature

Solar 
radiation

(J/m2)(mm)
Annual 
average

Annual 
maximun

Annual 
minimum

soil 
average  

(°C)
HRU23 0.44 0.65 0.47 0.53 0.33 0.49 0.46

HRU26 0.27 0.57 0.31 0.36 0.21 0.58 0.33

HRU27 0.27 0.57 0.31 0.36 0.21 0.58 0.33

HRU28 0.24 0.71 0.28 0.32 0.2 0.52 0.28

HRU30 0.39 0.63 0.48 0.54 0.35 0.5 0.43

HRU31 0.24 0.71 0.28 0.32 0.2 0.52 0.28

Source: This table was developed by the authors.

higher the precipitation and the evapotranspiration level, the higher the yields. On the 
other hand, the temperature and solar radiation variables show an inverse relationship.
 These results are consistent with those obtained by Hernandez-Ochoa et al. (2018) and 
Mereu et al. (2021), who highlighted the importance of temperature for the productive 
yields of wheat. However, the highest correlations in temperature of the 23 and 30 HRUs 
were not statistically significant; this could be explained by the annual precipitation, which 
was higher in both cases. These results match the findings of Zhang et al. (2017), who 
determined that other climatic variables (such as evapotranspiration and solar radiation) 
impact wheat yields. One of the advantages of this model is the ease with which various 
climatic variables can be incorporated. In contrast, most academic literature mainly focuses 
on the effects of temperature and precipitation. This work does not consider technological 
change or adaptation measures; the introduction of this type of strategy helps to mitigate the 
effects of climate change (Pequeno et al., 2021), hence the importance of its incorporation 
in the modeling assumptions. However, this does not lessen the depth of our results.
 The use of environmental simulation models is a tool to estimate changes in wheat yields, 
using a structure that —unlike models emanating from conventional economics— takes 
the environment into consideration, as one of the factors that determines the production 
of agricultural systems. The influence of the climate on the development of the wheat 
crop ultimately impacts its yields and profitability. In this sense, an intense generation of 
scientific knowledge has been motivated by the search for substantive solutions to prevent 
and remedy the effects of its vulnerability to climate change.

CONCLUSIONS
 The influence of climate change on wheat production has been corroborated. As part 
of these academic efforts, this work validated a procedure that confirms the influence 
of climate change on the production system. In this process, areas of opportunity were 
identified to be covered in later stages of the overall research process, involving, among 
other aspects: a) developing productive yield scenarios, based on the estimation of climatic 
data; b) strengthening the accuracy of the predictive capacities of the model, in terms of 
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productive yields; c) incorporating the effects of technological change; and d) replicating 
the use of the model in other agricultural production systems and water spaces.
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